Detecting Coercive Lures with OCR
InQuest Deep File Inspection® (DFI) utilizes machine vision and optical character recognition (OCR) to identify the social engineering component of a variety of malware lures. This is one of the myriads of techniques that we employ to detect novel malware that may leverage previous unseen and undetectable tactics.
Acknowledging that phishing is still the predominant access vector for threat actors to carry out their attacks, it is irresponsible to think that it is possible to “Squish the Phish” or get that “click rate” down to zero. In respect to the colloquial security proverb, “Prevention is ideal, but detection is a must”, InQuest has been following a variety of different techniques used in malicious documents.
On a consistent basis, threat actors are trying to convince the unbeknownst user into “enabling macros” or “enabling content” in order to progress down the attack chain.
Typically, these documents contain a macro called “Auto_Open” or “Document_Open”, but it could really be any one of a dozen or so canonical names that cause Microsoft Office to automatically execute the macro once the document is opened.
Fig 1. Coercion Lure. 4bda1925f9a18e879eec373263b37ae20581403777bbdf899ca8ba1ae3cefbc9
Over the last two years, we have published technical blogs covering in-depth analysis on some techniques used within these maldocs. Generally, they had low AV detection rates and were vehemently obfuscated to cause frustration to analysts and security products.
One successful InQuest signature, “Document Containing Macro Execution Coercion”, is described as Microsoft Office document malware carriers that attempt to coerce the user into activating malicious content through on-screen instruction. In some environments, macros are disabled within Microsoft Office, and therefore malicious macros will not be executed by default. Threat actors use different types of lure messages in an attempt to convince users to enable macros so malicious code can be executed. The severity of this event will increase in the presence of other alerts, for example, those pertaining to automatic macro execution, obfuscation, and other suspicious attributes.
Value of OCR
There is appreciable value returned when combining OCR with the DFI process. After the OCR strips the text from the images, de-facto or user-defined threat detection signatures can alert on the text from within the image. For example, deduced text strings in the form of “enable content ” or “office version isn’t compatible” are frequently used in these documents. Of note, another use case in this scenario could be data-loss detection identifying PII, PHI, PCI, or other sensitive information
InQuest Labs consistently sources the strings found in these lures to keep our signatures up to date. Our user base and in-house security engineers have been commenting on the consistent success with this detection technique.
Fig 2. OCR Derived Text.
Tracking Graphical Assets Based on XMP IDs
InQuest has been tracking the graphical assets used in the malicious documents using Adobe Extensible Metadata Platform (XMP) identifiers (IDs). As described in Adobe XMP: Tales of an Overlooked Anchor, the hashes / GUIDs are used as a standard for mapping graphical asset relationships, XMP allows for tracking of both parent-child relationships and individual revisions. There are three categories of identifiers: original document, document, and instance. Generally, XMP data is stored in XML format, updated on save/copy, and embedded within the graphical asset. The following list of XMP IDs was harvested from the most common graphical lure templates:
037efa89-9f85-d141-bdcb-7fc208a9471f
25720195-077c-684a-b376-ddb0eec9490d
4da1efc4-3be3-db47-ad6a-94bef19999d7
5a11ba92-5aa2-dd4c-9428-76c6845a42e9
7d130047-163d-7c4b-ad85-c450be72e18e
8044e5c8-00df-004b-a352-8ad4178136bf
9cb60a7b-deba-d647-b8f5-5940685d2ab5
baebffad-e645-e048-95f1-302ea6696408
ce1f5951-83ee-0949-a431-1a7ed96b5005
cf388654-c5b4-264f-b9bf-723c838a6b4d
e48fd268-0a9f-cb49-b560-b2b7bd429157
faf5bdd5-ba3d-11da-ad31-d33d75182f1b
Note that the above happen to be all in GUID format, but hash format is plausible as well.
Gallery of Common Graphical Lure Templates
The following gallery of lures was harvested from a variety of malware samples collected over the past 30 days. Common among these lures is that they all capable of evading common detection stacks.
Fig 3. 6bd1f68f097c7ad45edbc1038b7ecdbaab7755c1f5dcd314f9d0c72905daf1da
Fig 4. 3ca2e33efbca17cd1ef1aa5152e7d84bb0bb2d597e70c7265f473fc2089d40ef
Fig 5. 0cea6df5c4d704c6ed962864ea64f453dd13b582f22033e0e1487bd104763cf0
Fig 6. 3a8228f70497cc4d49992ef3fd29ffafd9da7dd9832464fa44b98793d0b19d5e
Fig 7. 8b9eeb92cc9a37e862c59a0fa8afeb54a7be15de3a897c71f7f3f0c871662759e
Fig 8. 8e8da1dd35fcb845d2beb3fcae2ad92520b9c7fcbfab05a1eed919f7a6b08fc0
Fig 9. 130439d9b8a66117b05587c50710be9d35e765139086c73f9d2190a8602bfec5
Fig 10. 482a0d6e274186c70435c4b3c198797c25b2b6657a0bf400090c7989bb87142f
Fig 11. bd97cd47caf2c1d33964b38a8113fd9fc35f5ac557b69c7abe27da7bfd04c77f
Fig 12. c5ec102aa7fe27ca05d4fe532c79fbb1e623fed6273eb00f46e792a4e267a3ef
Fig 13. 820832fd5c46c67d1913f023ec8dbe21e3e69d753af5e56b6c3088fd1c56ac6a
Fig 14. bcb00b6f67396126e1c2f0edd745e3589d10aeae0f744161d6c576312affdd96
Fig 15. 1e6891472de82be04e4cf9177bdc68b59b22e72aaef1d6a4aa31892463902f09
IOCs
Adobe XMP IDs
037efa89-9f85-d141-bdcb-7fc208a9471f
25720195-077c-684a-b376-ddb0eec9490d
4da1efc4-3be3-db47-ad6a-94bef19999d7
5a11ba92-5aa2-dd4c-9428-76c6845a42e9
7d130047-163d-7c4b-ad85-c450be72e18e
8044e5c8-00df-004b-a352-8ad4178136bf
9cb60a7b-deba-d647-b8f5-5940685d2ab5
baebffad-e645-e048-95f1-302ea6696408
ce1f5951-83ee-0949-a431-1a7ed96b5005
cf388654-c5b4-264f-b9bf-723c838a6b4d
e48fd268-0a9f-cb49-b560-b2b7bd429157
faf5bdd5-ba3d-11da-ad31-d33d75182f1b
Selected Malicious Document Hashes
0090e624ffc2118731d55fc87660b78977b3f8c975006b1e58df03e8a134cc4f
01b9b8580230a33a84fa39cf8238fef4d428cd9cf83f9acfb449626ee5b8ea8c
085f24ef9e41fec40b75dee7b0e60b224b7391c2affd09f9c92f7a9b6b212acd
0a3f4bef77abc93874f79e197e9c99c68b4bd381a65b5a027843c9f789d4dab2
0a4796f99b42925351f3e135e4ca229328970c06cfcb2294e9aa8c58c33ae986
0b39948f16ff05f5cd0e0b5d87ee426a671c520affa09ad0c33a612e76643a1c
0cea6df5c4d704c6ed962864ea64f453dd13b582f22033e0e1487bd104763cf0
0f52267f087eb6c00daf328f145368e495ccf8252ed84699c5f2d3a4203d8708
10f79daf80a8c4c608fb6cfa7e1d7764dbf569a9a15832174225dda3c981062a
11fc0f16f456946282c045a7de6d82b1da373e49de58ff9ad654336b2fb1bf0f
130439d9b8a66117b05587c50710be9d35e765139086c73f9d2190a8602bfec5
18bdfc5c088f91cced4ce7cc9c5318e6708d67d34795602ca16cd195c7cd6ee6
192dd15885d20c08857696b166473222fe4530435571140f9d9533a18c8ddf02
1e6891472de82be04e4cf9177bdc68b59b22e72aaef1d6a4aa31892463902f09
2286ce89fd4613b3f2eb7b0bcdf3a522dae0e52cd090916eecf62101f583d048
22bb1293cfd109d0b8bd44d410f379deb8c4d02b095552b8954c6a75e5bc9ae9
22dd30e15c6d7dd29067bb53b4b150ebbc554252378849dcc9ae1970fa32cc1f
23d1e476ab099fff5d1287553f6e7ba7e1c305273fe05cedb5ab6fe8b589705f
24f3c1c8a602cba6c1d78da4d36b9ed4809df06f7a0fc600c00a857de66f3323
250593c7b94207d44befaa3d457f7a064bb639b136156f84828499eb6c0cab97
259c7d38efbbce4a257d81b0fce295e392df9871db5c20c2269fda075c8a1a92
2aa9e690895bd08efe0bc1ea961e03f99fd366ac488464c1c7925523172cfaee
2b22881fd9d6a6b9a5298d49a38e0a384908bcae5fa47f66cf598d9b5e4a3a60
2c84f218b0bee656b281a78a690bbe205f7c5c9b77446b16594de4fcb57aa067
2d99567edd88a1e416ace504bd53ee0d2ec066cb437b5e9bdad2e0df0f97c3c9
2dcfcf26cc5e5eac92bab1c1aff23be2aa5b4ff7031e97f223e5f01733f0db89
33e93041186f28aad4f1e1d35a964c64b8fc85e6ab91697403bc0855a1f8731a
34827d5bafd27dbfb9bf7bb91fd92c4080bb6bbbf66d18aff59a4af25e53d73b
376598891290376013cbd6b52aea997652384ff1c0f27ea513b1505820cb1e22
3a0ea7cef74d93a40c10720357e7aef0967316239d1d8ea54dc0019dbc2c4d74
3a8228f70497cc4d49992ef3fd29ffafd9da7dd9832464fa44b98793d0b19d5e
3bf6f90de075923cf8293fc5c2bb4f2771c4692bbebd7729d75c3d9ba44269f9
3ca2e33efbca17cd1ef1aa5152e7d84bb0bb2d597e70c7265f473fc2089d40ef
3f16b1c889e2fcbbf96fb32693c712dc322b7c72e1092da42c5bddf079012610
4047b864c37d3ae4c0a37375e302497ee575291c28255d8bb41d83f0d1cbbad1
40c3aff7560f36a51e43f82c5f3370aa1b8b7488742c449e0f66c21f30537cde
4224fcb79b6e63a774b4bddc9cb00179a63feee5462b885dc2b264094125a0b3
428b7024a14e1e76c4fe208ac21d2b37abdea57f362dd448c487dfcfc74e890f
42a06bea1a8b433334ad366d6725617e0324f242b6ee980785cc1218131f1cfd
43b9aabc7eeb1bcf91613fd0ad714763f5c9c65cd876d1d69293e15af03d8fa6
44e444fa117c502b123341d656070331a51e1b77f9248763a4a162412c0ced03
482a0d6e274186c70435c4b3c198797c25b2b6657a0bf400090c7989bb87142f
4bda1925f9a18e879eec373263b37ae20581403777bbdf899ca8ba1ae3cefbc9
4e105f96511b17aab8bbf9d241a665b466e4d0c4dd93af83710ec6423ceb1b0f
50aa8976ec692e058bc525d49465329c6380537f53669058d1542b94eef68128
52b126783b654905df5b7bea881bc3f5be217eee7fe86c9f07be33a4c950aebb
548a2ce5ca5f3f629cf524d360b32f4e04d21b57940dbb228c145ca871097c3c
5842d4b3210c23fca22b69e34c146a48bfff0affc6313ee6fc45b8a3430d8f61
5b1fdd5e3779798bddd5da83554c6439467078643344bafe0bd464f4012522b4
5bb1d5270278636fb023b3f0723979929c059f4133c5b1261baf1f5d7badf19f
6654a38cba97469680b916233fa9e3a2cf97a1f6f043def9c76a64fb285f32de
67543367d8fda211437a189fcb2836a6e9dff3feb1857c4bcc30286f04fb7ff4
67a46a7954361ad55be59ce6102d57659c4ca53790005f124953a836801ae86d
68eae8d9e9801d1abccb39d3fd3b8f717829fae26627e53a8f6b5eb503c320be
6bb1db6ccae5c31599543bad4d66af13c45cbcaffdfb26bdae1b8c142f5445b8
6bd1f68f097c7ad45edbc1038b7ecdbaab7755c1f5dcd314f9d0c72905daf1da
6c1bba12d0aa52b3cb797a2c601125b551e4209d17d3ab6a3340ecfeed3a2b93
6c37e808baa98b5a247c555bb64d56d55fe2bafc49b1c279b7b396c5fd739937
6c45602c1c35a68d5a070d9e4af6c11f87c813115f3463bfdc3c04c83f270468
6d0d10d8197389db11c5d894a9da37f2ecfde174cd5aa8ac180a80bbff02c0d3
6fc10a3cd47f8d5a77029b458c620a743f105b8b105b95babdc047269a01e05d
72013b5ec3069a1f62b2b1e1baf22e5639b15eb673501d2887132434736f6500
76ea3dae6b913f7baeef516dfc513c7d73c9edb8ff80e456aec98b8529850529
77972c1847fc9608a484d72290b42de918074e33864fc3d5906d5e296c0cf725
7a151b7d2205529e22b8e14c630356ff3348980d83a634c4bb333357cecaeb4a
820832fd5c46c67d1913f023ec8dbe21e3e69d753af5e56b6c3088fd1c56ac6a
8219230fc42e44321cdb0ff3bbcd3edd204e66b7d855b7f1cd6f555141a4deaa
85d35e707e1870a1f250a26d919aea933be0db66ef95d2060c7ea2f3a63518c2
86a237d0a5fac77fd8efda3a150cd1ce3ca2eb6afb5f1096f8f344864de799c2
8b9eeb92cc9a37e862c59a0fa8afeb54a7be15de3a897c71f7f3f0c871662759
8e8da1dd35fcb845d2beb3fcae2ad92520b9c7fcbfab05a1eed919f7a6b08fc0
8f0133ee567962684876ea09deba6b25e4cf1e27e3fe23389758bd7065728346
8f6d5f64adcfd32e74eaa3a9e376385c59f7ce41d0cb215e0d22b6f44235c0e9
9519045db67aaa9a713e39d47787d59e7b4df67ae99fd5dbaa98ad8679ae3d9c
955d59e66e24b4585dd044b1576f03ff0e6d8306397766420806979475eededd
97489f14edf02081943ba6bdc4f8ddc61b489c2d114eff2fc560f6225f3c8907
9bcf6185b2a46d17bbe247e5c33586eb8eaec7eefa385cd5a6ea3058a145faad
9d2cb014ef6a4d99fcd11a3ba9077d4846af8cc83cc68a750fd87ba209a200b0
9ee1e7d2e45509c0214ace51b05b3785d57be57a098abd5b55b447770d14629d
a487f2535ae50af16fa5eb852968fbd40543842009f1fd6790f194cad96b8b76
aa22a09ab200d4f75c1661201560831a26d575137c4c4ae454f7a438d590d459
aa6e5b1d271c955596b36671d729837bfa0162cf71c0f1d7649475dc5440a12c
ab4d15596adb228e4e1cf74fb07797fc219222da9892830d7fcc5ad82c713507
abe03a6f900f0bf57ca6385013cc828354732f08b961bbf1dad5d0126e4e78bc
add4e403e0a508a08f82e74e6079fbed86cf2f31f47db61697efbc6d52c72a99
b2a1d41b23011262e9ad3557485fcbd6ef3cab71d74e6df1965c93c5bd85ddd4
b92e653d98b47517287e2e5e231705988fe45c4ab2b549ee36ed59dabf8e7f17
bcb00b6f67396126e1c2f0edd745e3589d10aeae0f744161d6c576312affdd96
bd97cd47caf2c1d33964b38a8113fd9fc35f5ac557b69c7abe27da7bfd04c77f
c44f65a7af5bda38bd243ccb9183aee20bb918bc5cc8ada8d78623f7ccde85cb
c5ec102aa7fe27ca05d4fe532c79fbb1e623fed6273eb00f46e792a4e267a3ef
cb34aabdfeeabf0bb1e68bc798744c3e975d336b540d0b8faf7b96af41b3410c
d48a23e5e34c5733af48485cf77223f825557bd8aeab349f805550b5d8e3cacc
dba362bc8a4a2e46ba1e4bb3ac851a32b23ff33765cce8cf45a3c2e28a0ab7bc
e468618f7c42c2348ef72fb3a733a1fe3e6992d742f3ce2791f5630bc4d40f2a
e4acd07330916aab8e489e987c091d859810df3e6d9e17f8165473256519a427
e7fd926110b80a3498b7d06672df208e9d46b942e08b230af773508abaff6643
e90fe814adf85a4706c585237c7877139f6bdf9b08e5c21442f93e081c07797a
ef61a66ace3a55845863b6aee7da8676fe741ded0d6b0dea2952a31915dc978d
f088a5262f3d113f2eb373b083d6167729fb724980b9d187bd4c2124bb60e14c
f4e43a4ef567bf7f3c057478f6eaefb62f7ef57e76bce2275e3eb536be942480
f550bd94aa1f22989b4f3057f862af428dd5e8f8db7ff945f1b43aca83706e53
ffb6ba6e8f545b4a349d5dc8de18933d2036536135dc6b9718caec3050146baa
Please note that all of the above samples are available for download from InQuest Labs.